7,089 research outputs found

    Spacetime and the Holographic Renormalization Group

    Get PDF
    Anti-de Sitter (AdS) space can be foliated by a family of nested surfaces homeomorphic to the boundary of the space. We propose a holographic correspondence between theories living on each surface in the foliation and quantum gravity in the enclosed volume. The flow of observables between our ``interior'' theories is described by a renormalization group equation. The dependence of these flows on the foliation of space encodes bulk geometry.Comment: 12 page

    What we don't know about time

    Full text link
    String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating "Forty Years of String Theory", it seems appropriate to step back and ask what we do not understand. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.Comment: 15 pages; Essay for a special issue of Foundations of Physics commemorating "Forty years of string theory

    Deconstruction and Holography

    Get PDF
    It was recently pointed out that the physics of a single discrete gravitational extra dimension exhibits a peculiar UV/IR connection relating the UV scale to the radius of the effective extra dimension. Here we note that this non-locality is a manifestation of holography, encoding the correct scaling of the number of fundamental degrees of freedom of the UV theory. This in turn relates the Wilsonian RG flow in the UV theory to the effective gravitational dynamics in the extra dimension. The relevant holographic c-function is determined by the expression for the holographic bound. Holography in this context is a result of the requirements of unitarity and diffeomorphism invariance. We comment on the relevance of this observation for the cosmological constant problem.Comment: 11 pages, LaTe

    On the existence of supergravity duals to D1--D5 CFT states

    Full text link
    We define a metric operator in the 1/2-BPS sector of the D1-D5 CFT, the eigenstates of which have a good semi-classical supergravity dual; the non-eigenstates cannot be mapped to semi-classical gravity duals. We also analyse how the data defining a CFT state manifests itself in the gravity side, and show that it is arranged into a set of multipoles. Interestingly, we find that quantum mechanical interference in the CFT can have observable manifestations in the semi-classical gravity dual. We also point out that the multipoles associated to the normal statistical ensemble fluctuate wildly, indicating that the mixed thermal state should not be associated to a semi-classical geometry.Comment: 22 pages, 2 figures. v2 : references added, typos correcte

    Anti-de Sitter boundary in Poincare coordinates

    Full text link
    We study the space-time boundary of a Poincare patch of Anti-de Sitter (AdS) space. We map the Poincare AdS boundary to the global coordinate chart and show why this boundary is not equivalent to the global AdS boundary. The Poincare AdS boundary is shown to contain points of the bulk of the entire AdS space. The Euclidean AdS space is also discussed. In this case one can define a semi-global chart that divides the AdS space in the same way as the corresponding Euclidean Poincare chart.Comment: In this revised version we add a discussion of the physical consequences of the choice of a coordinate system for AdS space. We changed figure 1 and added more references. Version to be published in Gen. Relat. Grav
    corecore